PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2020, 54(2), p. 81-86

Mathematics

THE SET OF 2-GENERETED C*-SIMPLE RELATIVELY FREE GROUPS HAS THE CARDINALITY OF THE CONTINUUM

V. S. ATABEKYAN *

Chair of Algebra and Geometry, YSU

In this paper we prove that the set of non-isomorphic 2-generated C^* -simple relatively free groups has the cardinality of the continuum. A non-trivial identity is satisfied in any (not absolutely free) relatively free group. Hence, they cannot contain a non-abelian absolutely free subgroups. The question of the existence of C^* -simple groups without free subgroups of rank 2 was posed by de la Harpe in 2007.

https://doi.org/10.46991/PYSU:A/2020.54.2.081

MSC2010: Primary: 20F05; Secondary: 20E10, 20E05, 20D45.

Keywords: relatively free groups, C^* -simple group, amenable radical, non-amenable group, reduced C^* -algebra of a group.

Introduction. By definition, the reduced C^* -algebra of G is the closure of the linear span of the set $\{\lambda_G(g)|g \in G\}$ in the operator norm, where $\lambda_G : G \to U(l_2(G))$ is the left regular representation of a group G. The reduced C^* -algebra of G is denoted by $C_{red}(G)$. A C^* -algebra is said to be a simple if it contains no proper nontrivial two-sided closed ideals. A group G is said to be C^* -simple if the algebra $C_{red}(G)$ is simple. The C^* -simplicity of a group implies the triviality of its amenable radical (see, e.g., [1]). In particular, if a given group is C^* -simple and amenable, then it is trivial. We recall that the amenable radical of a group is a maximal amenable normal subgroup of this group. M. Day showed in [2] that any group has an amenable radical. In the 2017 paper [3], it was proved that the amenable radical of a group G is trivial if and only if the C^* -algebra $C_{red}(G)$ of G has a unique trace.

The question of whether these three properties of a group (of being a C^* -simple group, having a unique trace, and having a trivial amenable radical) are equivalent was open for a long time (see, e.g., [1], Question 4). In 2017, the part of this problem was solved. More precisely, examples of non- C^* -simple groups with a trivial amenable radical were constructed in [4].

In the 1975 paper [5], Powers proved the C^* -simplicity of free groups of rank 2. Then, various authors described other interesting classes of C^* -simple groups. For

^{*} E-mail: avarujan@ysu.am

example, the free products of two groups [6], the outer automorphism groups of free groups of rank ≥ 3 [7], and relatively hyperbolic groups without nontrivial finite normal subgroups [8] are C^* -simple. The following questions were posed in the survey paper [1] (see [1], Question 15):

- (i) Does there exist a group which is *C*^{*}-simple and which does not contain non-abelian free subgroups?
- (ii) Is a Burnside group of exponent *n* on $k \ge 2$ generators *C*^{*}-simple for *n* large enough?

In [9], Ol'shanskii and Osin gave a positive answer to Question (ii). A little later, yet another proof of the C^* -simplicity of the free Burnside groups B(m,n) of sufficiently large odd period was given in [3], which used properties of free Burnside groups obtained previously by S. Adian in [10] and by author in [11]. This proof is based on the following C^* -simplicity criterion.

Lemma 1. (see [3], Theorem 1.3). A discrete group with countably many amenable subgroups is C^* -simple if and only if its amenable radical is trivial.

In [12] (2016) it was proved the following more general theorem: *The n*-periodic product of an at most countable family of any finite or countable groups having no involutions and containing only countably many amenable subgroups, is a C^* -simple group for any odd $n \ge 1003$. This result implies that an *n*-periodic product of a countable family of any finite or cyclic groups without involutions is C^* -simple for any odd $n \ge 1003$. In particular, the free Burnside groups B(m,n), that is, the relatively free groups of the variety of all groups satisfying the identity $x^n = 1$, are C^* -simple, since they are *n*-periodic products of cyclic groups of order *n*.

The aim of this paper to show that in fact there are other relatively free C^* -simple groups.

Theorem 1. The set of non-isomorphic 2-generated C^* -simple relatively free groups has the cardinality of the continuum.

Consider the following famous family of words on two variables: $\{[x^{pn}, y^{pn}]^n\}$, where $[a,b] = aba^{-1}b^{-1}$. It is well-known (see [13]) that if *p* ranges over the set of all prime numbers then the group identities $\{[x^{pn}, y^{pn}]^n\} = 1$ are independent, that is, none of these identities follows from the others. This implies that for every odd $n \ge 1003$ there are continuously many distinct varieties $\mathscr{A}_n(\Pi)$ corresponding to distinct sets Π of primes. So for every fixed value m > 1 there are continuously many non-isomorphic groups $\Gamma(m, n, \Pi)$, where $\Gamma(m, n, \Pi)$ is the relatively free group of rank *m* in the variety $\mathscr{A}_n(\Pi)$. Hence, Theorem 1 is an immediate consequence of the following

Theorem 2. Any group $\Gamma(m, n, \Pi)$ is C^{*}-simple.

Note that the groups $\Gamma(m, n, \Pi)$ were introduced and investigated by S.I. Adian in [13] and [14], where he also proved the independence of the system of identities $\{[x^{pn}, y^{pn}]^n\} = 1$ for prime *p*, solving the finite basis problem in group theory posed

by B. Neumann in 1937. Latter on in [15] and [16] there were established some new properties of groups $\Gamma(m, n, \Pi)$.

In the presentation below, we use the notation and terminology of the monograph [13] and the papers [16], [17] without special references.

Some Auxiliary Statements. Let $\Gamma(n,\Pi) = \Gamma(2,n,\Pi)$ be a free group of rank 2 of the above mentioned group variety $\mathscr{A}_n(\Pi)$ with the free generators *b*, *c*. Consider the homomorphism $\tau : \Gamma(n,\Pi) \to \Gamma(n,\Pi)$ given on the free generators *b* and *c* by the formulae $\tau(b) = cb^9c$ and $\tau(c) = bc^9b$ (any map from the set of free generators of a relatively free group to the same group has a homomorphic extension).

Proposition 1. For any odd $n \ge 1003$ and any positive integer k > 1, a word A is an elementary period of some rank γ ($A \in \mathcal{M}_{\gamma}$) if and only if $\tau^{k}(A)$ is an elementary period of rank $\gamma + k$ ($A \in \mathcal{M}_{\gamma+k}$), where τ^{k} is the k-th iteration of the homomorphism $\tau : \Gamma(n, \Pi) \to \Gamma(n, \Pi)$.

Proof. This statement is an analogue of Proposition 1 from [11]. Its proof is identical with the proof of the mentioned proposition, so we skip it. \Box

Lemma 2. Any non-trivial normal subgroup of $\Gamma(n,\Pi)$ contains an elementary period C of some rank α such that $C = [A^d, Z^{-1}B^dZ]$ in rank $\alpha - 1$, where A and B are minimized elementary periods of some ranks δ and σ , $Z \in \mathcal{M}_{\alpha-1}$, $\delta \leq \sigma \leq \alpha - 1$ and d = 191.

Proof. The proof coincides with the proof of Lemma 7.3 from [17]. \Box

Lemma 3. Suppose that the commutator $[A^d, Z^{-1}B^d Z]$ is equal to an elementary period *C* of rank β in the group $\Gamma(2, n, \Pi, \beta - 1)$, where *A* is an elementary period of rank δ , *B* is an elementary period of rank σ , $Z \in \mathcal{M}_{\delta-1}$, $\delta \leq \sigma \leq \beta - 1$, d = 191, $n \geq 1003$ is an arbitrary odd number, and the words A^q and B^q occur in some words in the sets $\mathcal{M}_{\delta-1}$ and $\mathcal{M}_{\sigma-1}$, respectively. Then the elements $u = C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200}$, $v = C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300}$ generate a subgroup isomorphic to the group $\Gamma(n, \Pi)$.

Proof. Consider an arbitrary reduced word W(b,c) in the group alphabet b,c,b^{-1},c^{-1} which is not equal to the identity in $\Gamma(n,\Pi)$. It follows from the principle of symmetry ([2], Ch. I, §§5.1–5.3) that the word $W(b^{-1},c^{-1})$ is also not equal to the identity in $\Gamma(n,\Pi)$.

We claim that the word $W(C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200}, C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300})$ obtained from W(b,c) when the latter is subjected to the letter-for-letter substitution

$$b^{\pm 1} \to (C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200})^{\pm 1},$$

$$c^{\pm 1} \to (C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300})^{\pm 1}$$

is also not equal to the identity in $\Gamma(n, \Pi)$. This will mean that the words

$$u = C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200}, \quad v = C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300}$$

form a basis for a relatively free subgroup of rank 2 of $\Gamma(n, \Pi)$.

Let *k* be a fixed positive integer satisfying the inequality $k > |W(b^{-1}, c-1)|$. By Lemma 2.4 of Ch. VI in [13] we can find a word $Y \in \mathscr{A}_{k+1}$ such that $W(b^{-1}, c^{-1}) = Y$ in $\Gamma(2, n, \Pi, k)$. By our assumption, $Y \neq 1$ in $\Gamma(n, \Pi)$.

By making some changes in the definition of the groups Γ_{α} and Γ in [16, 17], we construct auxiliary groups Γ_j by induction on the rank j > 0.

For ranks $j < \gamma + k$ the definition of the group Γ_j coincides with that of the group $\Gamma(\alpha, n, j)$ [13], that is,

$$\Gamma_j = \left\langle b, c \mid E^n = 1, E \in \bigcup_{\beta \leq j} \mathscr{E}_{\beta} \right\rangle,$$

where \mathscr{E}_{β} is the set of all marked elementary periods of rank β .

Let $j > \beta + k$. According to Proposition 1 we have $\tau^k(Z) \in \mathcal{M}_{\delta+k-1}$, $\tau^k(A)$ is an elementary period of rank $\delta + k$, $\tau^k(B)$ is an elementary period of rank $\sigma + k$, $\delta + k \leq \sigma + k \leq \beta + k - 1$; furthermore, the words $\tau^k(A^q)$ and $\tau^k(B^q)$ occur in some words in the sets $\mathcal{M}_{\delta+k-1}$ and $\mathcal{M}_{\sigma+k-1}$, respectively.

Let

$$R_1 = \tau^k (C^{200} A C^{200} A^2 \cdots A^{n-1} C^{200}) b,$$

$$R_2 = \tau^k (C^{300} A C^{300} A^2 \cdots A^{n-1} C^{300}) c.$$

We set

$$\Gamma_j = \left\langle b, c \mid R_1 = 1, R_2 = 1, E^n = 1, E \in \bigcup_{\beta \leq j} \mathscr{E}_{\beta} \right\rangle.$$

Finally, we define the group Γ :

$$\Gamma = \left\langle b, c \mid R_1 = 1, R_2 = 1, E^n = 1, E \in \bigcup_{\beta \ge 1} \mathscr{E}_{\beta} \right\rangle.$$

By the definitions of the words R_1 and R_2 , in the group Γ the equalities

$$R_1 b^{-1} = \tau^k (C^{200} A C^{200} A^2 \cdots A^{n-1} C^{200}),$$

$$R_2 c^{-1} = \tau^k (C^{300} A C^{300} A^2 \cdots A^{n-1} C^{300})$$

hold.

Therefore under the homomorphism $\tau^k : \Gamma(n, \Pi) \to \Gamma$ we have the equalities $\tau^k(W(C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200}, C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300})) =$ $= W(R_1b^{-1}, R_2c^{-1}) = W(b^{-1}, c^{-1}).$

By hypothesis we have $W(b^{-1}, c^{-1}) = Y$ in the group $\Gamma_k = \Gamma(n, \Pi, k)$ and $Y \in \mathscr{A}_{k+1}$. If we suppose that $W(b^{-1}, c^{-1}) = 1$ in Γ , then we obtain $Y =^G 1$. Then for some ε we have $Y = \Gamma_{\varepsilon} 1$, that is, according to Lemma 2.8 of Ch. VI in [13] we obtain $Y \simeq^{\varepsilon} 1$. On the other hand, by Lemma 2.16 of Ch. IV in [13] we obtain $Y \equiv 1$, which is a contradiction.

Consequently, $W(b^{-1}, c^{-1}) \neq 1$ in Γ and, since the word

$$W(C^{200}AC^{200}A^2\cdots A^{n-1}C^{200}, C^{300}AC^{300}A^2\cdots A^{n-1}C^{300})$$

is an inverse image of the word $W(b^{-1}, c^{-1})$ under the homomorphism τ^k , we have $W(C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200}, C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300}) \neq 1$

in
$$\Gamma(n,\Pi)$$
.

Lemma 4. Any non-trivial normal subgroup of $\Gamma(n, \Pi)$ is non-amenable.

Proof. By Lemma 2 and 3 a non-trivial normal subgroup of $\Gamma(n,\Pi)$ contains elementary periods *C* and *A* such that the elements $u = C^{200}AC^{200}A^2 \cdots A^{n-1}C^{200}$, $v = C^{300}AC^{300}A^2 \cdots A^{n-1}C^{300}$ generate a subgroup isomorphic to the relatively free group $\Gamma(n,\Pi)$.

Obviously, the free Burnside group B(2,n) is a homomorphic image of the group $\Gamma(n,\Pi)$. By well-known theorem of S.I.Adian (see [10]), the group B(2,n) is non-amenable. Since B(2,n) is a quotient group of $\Gamma(n,\Pi)$, then the latter is also non-amenable (every quotient of an amenable group is amenable).

Lemma 5. *The amenable radical of* $\Gamma(n, \Pi)$ *is trivial.*

Proof. By definition the amenable radical of a group is a maximal amenable normal subgroup of this group. By virtue of Lemma 4 the trivial subgroup of $\Gamma(n, \Pi)$ is its only amenable subgroup.

Proof of Theorem 2. Theorem 2 follows from Lemma 4 and Lemma 1 (a criterion of C^* -simplicity).

Received 04.08.2020 Reviewed 14.08.2020 Accepted 17.08.2020

REFERENCES

- de la Harpe P. On Simplicity of Reduced C*-Algebras of Groups. Bull. Lond. Math. Soc. 39 (2007), 1–26. https://doi.org/10.1112/blms/bdl014
- 2. Day M.M. Amenable Semigroups. *Illinois J. Math.* **1** (1957), 509–544. https://doi.org/10.1215/ijm/1255380675
- Breuillard E., Kalantar M., Kennedy M., Ozawa N. C*-Simplicity and the Unique Trace Property for Discrete Groups. *Publ. Math. IHÉS* 126 (2017), 35–71. https://doi.org/10.1007/s10240-017-0091-2
- Le Boudec A. C*-Simplicity and the Amenable Radical. *Inventiones Mathematicae* 209 (2017), 159–174. https://doi.org/10.1007/s00222-016-0706-0
- Powers R.T. Simplicity of the C*-Algebra Associated with the Free Group on Two Generators. *Duke Math. J.* 42 (1975), 151–156. https://doi.org/10.1215/S0012-7094-75-04213-1
- Paschke W.L., Salinas N. C*-Algebras Associated with Free Products of Groups. *Pacific J. Math.* 82 (1979), 211–221. https://doi.org/10.2140/pjm.1979.82.211
- Bridson M.R., de la Harp P. Mapping Class Groups and Outer Automorphism Groups of Free Groups are C*-Simple. J. Funct. Anal. 212 (2004), 195–205. https://doi.org/10.1016/S0022-1236(03)00216-7
- Arzhantseva G., Minasyan A. Relatively Hyperbolic Groups are C*-Simple. J. Funct. Anal. 243 (2007), 345–351. https://doi.org/10.1016/j.jfa.2006.06.003
- Olshanskii A.Yu., Osin D.V. C*-Simple Groups without Free Subgroups. Groups Geom. Dyn. 8 (2014), 933–983. https://doi.org/10.4171/GGD/253

86	V. S. ATABEKYAN
10.	Adyan S.I. Random Walks on Free Periodic Groups. Math. USSR Izv. 21 (1983), 425–434.
	http://doi.org/10.1070/IM1983v021n03ABEH001799
11.	Atabekyan V.S. On Subgroups of Free Burnside Groups of Odd Exponent $n \ge 1003$. <i>Izv.</i>
	Math. 73 (2009), 861–892. https://doi.org/10.1070/IM2009v073n05ABEH002466
12.	Adian S.I., Atabekyan V.S. C*-Simplicity of n-Periodic Products. Math. Notes 99 (2016),
	631–635. https://doi.org/10.1134/S0001434616050011
13.	Adian S.I. The Burnside Problem and Identities in Groups. <i>Ergebnisse der Mathematik</i>

- 13. Adian S.I. The Burnside Problem and Identities in Groups. *Ergebnisse der Mathematik und ihrer Grenzgebiete* **95** (1970), Springer-Verlag, Berlin–New York, xi+311 p.
- 14. Adian S.I. Infinite Irreducible Systems of Group Identities. *Math. USSR Izv.* **4** (1970), 721–739. https://doi.org/10.1070/IM1970v004n04ABEH000928
- Adian S.I., Atabekyan V.S. On Free Groups in the Infinitely Based Varieties of S. I. Adian. *Izv. Math.* 81 (2017), 889–900. https://doi.org/10.1070/IM8631
- Adian S.I., Atabekyan V.S. Normal Automorphisms of Free Groups of Infinitely Based Varieties. *Mat. Notes* 108 (2020), 149–154. https://doi.org/10.1134/S0001434620070159
- Adian S.I., Lysënok I.G. On Groups All of Whose Proper Subgroups are Finite Cyclic. *Math. USSR Izv.* **39** (1992), 905–957. https://doi.org/10.1070/IM1992v039n02ABEH002232

Վ. Ս. ԱԹԱԲԵԿՅԱՆ

ՀԱՐԱԲԵԿԱՆՈՐԵՆ ԱԶԱՏ 2 ԾՆՈՐԴՈՎ *C**-ՊԱՐԶ ԽՄԲԵՐԻ ԲԱԶՄՈͰԹՅԱՆ ՀԶՈՐՈͰԹՅՈԻՆԸ ԿՈՆՏԻՆՈͰՈͰՄ Է

Աշխափանքում ապացուցվում է, որ ոչ իզոմորֆ 2 ծնորդով հարաբեկանորեն ազափ C^* -պարզ խմբերի բազմության հզորությունը կոնփինուում է։ Յուրաքանչյուր հարաբերականորեն (ոչ բացարձակ) ազափ խմբում փեղի ունի որևէ ոչ փրիվիալ նույնություն։ ՝հետևաբար դրանք չեն կարող պարունակել ոչ աբելյան բացարձակ ազափ ենթախումբ։ 2 ռանգի ազափ ենթախումբ չպարունակող C^* -պարզ խմբերի գոյության հարցը դրվել է Պ. դը լա ՝Հարպի կողմից 2007 թվականին։

В. С. АТАБЕКЯН

МНОЖЕСТВО 2-ПОРОЖДЕННЫХ ОТНОСИТЕЛЬНО СВОБОДНЫХ $C^{\ast}\mbox{-ПРОСТЫХ}$ ГРУПП ИМЕЕТ МОЩНОСТЬ КОНТИНУУМА

В работе доказано, что множество неизоморфных 2-порожденных относительно свободных C^* -простых групп имеет мощность континуума. В каждой относительно свободной (не абсолютно свободной) группе выполняется нетривиальное тождество. Следовательно, они не могут содержать неабелевых абсолютно свободных подгрупп. Вопрос существования C^* -простых групп, которые не содержат свободных подгрупп ранга 2, был поставлен П. де ля Арпом в 2007 году.